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We numerically investigate the dynamics of strongly disordered 1D lattices under single-particle displace-
ments, using both the Hertzian model, describing a granular chain, and the α + β Fermi-Pasta-Ulam-Tsingou
model (FPUT). The most profound difference between the two systems is the discontinuous nonlinearity of
the granular chain appearing whenever neighboring particles are detached. We therefore sought to unravel the
role of these discontinuities in the destruction of Anderson localization and their influence on the system’s
chaotic dynamics. Our results show that the dynamics of both models can be characterized by: (i) localization
with no chaos; (ii) localization and chaos; (iii) spreading of energy, chaos, and equipartition. The discontinuous
nonlinearity of the Hertzian model is found to trigger energy spreading at lower energies. More importantly, a
transition from Anderson localization to energy equipartition is found for the Hertzian chain and is associated
with the “propagation” of the discontinuous nonlinearity in the chain. On the contrary, the FPUT chain exhibits
an alternate behavior between localized and delocalized chaotic behavior which is strongly dependent on the
initial energy excitation.
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I. INTRODUCTION

The role of nonlinearity in disordered systems which ex-
hibit Anderson localization [1,2] is a topic that triggered a
vast amount of theoretical, numerical [3–7], and experimental
studies [8–11]. The two principal questions under consid-
eration are (a) does the energy carried by localized wave
packets eventually spread or not and (b) what is the route to
equipartition?

Among different nonlinear models, large theoretical work
and progress has been made especially for the Klein-Gordon
(KG) system and the discrete nonlinear Schrödinger (DNLS)
equation with disorder. For these systems, it has been found
that the combined influence of disorder and nonlinearity leads
to subdiffusive energy transport [5]. It is also now understood
that whether nonlinear Anderson localization persists or is
destroyed has probabilistic features and is directly associated
with chaos [12]. Additionally a variety of different physical
settings have been exploited to study this interplay between
nonlinearity and disorder, especially in optical and atomic
systems [9,13].

Recently a classical lattice, i.e., the granular chain de-
scribed by the Hertzian contact force [14], has also attracted
much attention in the same context [15–20]. The considerable
interest in the Hertzian chain can be attributed to the strong
nonlinearity of the system which is, however, easily tuned
(usually by the pre-compression of the chain). The Hertzian
contact forces also allow access to wave propagation in an
almost linear system up to the case of a lattice where only
nonlinear waves propagate (“sonic vacuum”) [21,22]. An
additional interesting dynamical feature of the granular chain
is that the power law nonlinearity, due to the Hertzian force,
coexists with a nonsmooth nonlinearity describing detached

particles [23–26]. Recent works on both uncorrelated and
correlated disorder granular chains showed that the system
traverses from a subdiffusive regime for sufficiently weak
nonlinearities to a super-diffusive regime for increasing non-
linearity [19]. In strongly disordered granular chains it was
found that localization coexists with chaos and equipartition
is reached for finite times [20].

Furthermore, the granular chain in the weakly nonlinear
regime provides an experimental setting to study the Fermi-
Pasta-Ulam-Tsingou (FPUT) model with both α and β type
terms [27,28]. In contrast to the DNLS and KG models,
which have been studied for disordered systems, the FPUT
system has been mostly studied in the homogeneous case,
although some studies regarding disorder also exist, e.g., in
Refs. [29–31].

In fact, the phenomenon of equipartition for the homoge-
neous case is a long standing problem, which originates from
the pioneer work of Fermi, Pasta, Ulam, and Tsingou [27,28],
although substantial progress has been made on the subject
[32,33]. Very recent studies both in α-FPUT (but also in the
KG model) periodic lattices showed that the thermalization
is reached through high order resonant interactions leading to
large timescales for equipartition [34,35]. It was also found
that the fluctuations of the entropy after the system reaches
equipartition are characterized by sticky dynamics close to
q-breathers for the FPUT model and discrete breathers for the
KG model [36].

In this work we aim to expose the role of different non-
linearities in the destruction of Anderson localization, the
chaoticity of the system but also the timescales to reach
equipartition. To do so we perform a detailed comparison
between the granular chain model and the FPUT system. It is
beyond the scope of our work to study the differences between
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the two models on general grounds. Our interest is to study
the fate of strongly localized modes and focus on the role
of discontinuous nonlinearities in their dynamics. A statistical
analysis of the linear limit, which is common for both models,
shows that for sufficiently strong disorder, the system acquires
a significant number of strongly localized, almost single par-
ticle, modes. From this ensemble we choose a representative
realization to illustrate its nonlinear behavior. Our goal is
to identify the mechanisms that lead to energy spreading
of an initially excited localized mode. Additionally, we use
chaos indicators [37,38] to quantify the total systems’ chaotic
behavior. We provide information about chaos propagation in
the lattice enabling us to differentiate localized and extended
chaos. By tracking the mode distribution during the dynamics’
evolution we provide insights regarding equipartition.

The paper is organized as follows. In Sec. II we intro-
duce the two models and establish the disorder strength for
the lattice which ensures strongly localized modes in the
linear limit. Selecting a single configuration and focusing
on a highly localized mode near the center of the lattice,
in Sec. III we study the mode’s evolution in both models
for increasing excitation energy. A thorough analysis of the
lattice dynamics is performed focusing on the spreading of the
initially localized mode, on the chaoticity of the system and on
monitoring the appearance of particle detachments. Finally,
we show results illustrating how and for which energy the two
systems reach energy equipartition. In Sec. IV we summarize
our findings and discuss their significance.

II. HERTZIAN AND FPUT MODELS WITH DISORDER

Both models studied here, namely, the granular chain with
Hertzian interactions and the FPUT system, are considered to
be energy preserving (i.e., without losses). Their total energy
for a chain with N spherical homogeneous beads of radius Rn

and mass mn (n = 1, 2, 3, . . . , N) is given by the following
Hamiltonian:

H =
N∑

n=1

Hn =
N∑

n=1

p2
n

2mn

+ V (Hz,F )
n . (1)

Here, pn = mnu̇n and un denote, respectively, the momentum
and displacement from equilibrium for each particle, (̇) de-
notes the first order time derivative, while the random radii Rn

are uniformly chosen in the interval [min(Rn), max(Rn)].
The Hertzian potential V Hz

n for each bead due to the
nearest-neighbor coupling is defined as V Hz

n
= [V Hz(un ) +

V Hz(un+1 )]/2, where

V Hz(un ) = 2
5 An [δn + un−1 − un ]5/2

+

− 2
5 Anδ

5/2
n

− Anδ
3/2
n

(un−1 − un ). (2)

The static overlap δn between two neighboring beads n − 1
and n is given by δn = (F0/An)2/3 where F0 is the precom-
pression force. The coefficient An for spherical beads is given
as An = (2/3)ε

√
Rn−1Rn/(Rn−1 + Rn)/(1 − ν2) where ε and

ν are the elastic modulus and the Poisson ratio respectively
[14]. The plus sign in [·]+ describes the fact that this term is
present as long as δn + un−1 − un > 0 and is absent otherwise,
since then the particles are no longer in contact. This is the

nonsmooth nonlinearity which substantially differentiates the
two models.

The FPUT model is described by Eq. (1) with a potential

V F (un ) =
4∑

k=2

K (k)
n

(un − un−1 )k . (3)

Accordingly, the potential of the nth particle is written as
V F

n = [V F (un ) + V F (un+1 )]/2.
For the rest of this work we consider a chain of N = 40

particles. In our simulations we choose units corresponding
to a mean radius of R̄ = 0.01m, and a static precompression
force F = 1N. The mean radius is used as a reference to
the uniform system with particles of radius R = (α + 1)R̄/2.
The disorder strength, is quantified by the parameter α =
max(Rn)/ min(Rn). This choice of disorder naturally leads
to a random distribution of both the masses and stiffness
coefficients [16]. In all calculations we use fixed boundary
conditions with dummy beads on both ends such that u0 =
uN+1 = 0 and p0 = pN+1 = 0. The corresponding equations of
motion for the Hertzian model Eq. (2) are

mn ün = An [δn + un−1 − un ]
3
2+ − An+1 [δn+1 + un − un+1 ]

3
2+, (4)

while for the FPUT model we obtain

mn ün =
4∑

k=2

[
K (k)

n+1
(un+1 − un )k−1 − K (k)

n
(un − un−1 )k−1]. (5)

A direct connection between the two models is made by taking
the Taylor series expansion of Eq. (4) up to fourth order
(assuming small dipslacements) un/δn,n+1 � 1. Doing so we
recover Eq. (5) with coefficients K (2)

n
= (3/2)Anδ

1/2
n

, K (3)
n

=
−(3/8)Anδ

−1/2
n

, and K (4)
n

= (3/48)Anδ
−3/2
n

[21]. Below we
normalize our units such that for the linear homogeneous

chain with α = 1 the frequency cutoff is ωmax =
√

4K
m = 1

with K = K (2)
n

and m = mn = 1.

A. Linear mode analysis of the disordered chain

In this work we are interested on the fate of strongly
localized modes. Thus, we first identify the sufficient disorder
strength able to sustain a significant amount of localized
modes. To do so, we perform a statistical analysis of the
linearized equation of motion,

mn ün = K (2)
n+1

(un+1 − un ) − K (2)
n

(un − un−1 ), (6)

which is common for both models. Assuming harmonic so-
lutions of the form U(t ) = U0eiωt , where U0 is a column
matrix with elements Un, n = 1, 2, 3, . . . , N . We then solve
the corresponding eigenvalue problem,

−ω2MU0 = KU0. (7)

The matrix M is a diagonal matrix with elements mn and K is
a sparse diagonal matrix containing the stiffness coefficients
K (2)

n . To quantify the localization properties of the disorder
system, we calculate the participation number [7] of the
wave packet P = 1/

∑
h2

n where hn = Hn/H . This quantity
is defined in a way so that its maximum value equals the total
number of particles (extended mode) and its minimum value
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FIG. 1. (a) Mean (over 1000 disorder realizations) participation
number 〈P〉 of the eigenmodes for varying disorder strengths α,
sorted in descending order k for each realization. The standard devia-
tion at each point is shown by the error bars. (b) The eigenfrequencies
of a particular disordered chain of 40 sites for α = 5 sorted by
increasing frequency. The insert shows the profile of the 34th mode.

equals to 1 when only one particle is participating in a mode
(strongly localized mode).

In Fig. 1(a), we show the mean value 〈P〉 of the par-
ticipation number of the eigenmodes for different disorder
strengths, using an ensemble of 1000 disorder realizations.
The modes are sorted with descending values of P for each
realization. For relatively weak disorder (e.g., for α = 2) 〈P〉
largely deviates for the homogeneous case (α = 1) and some
localized modes appear in the system. However, for values of
α � 4 the averaged participation number reaches a limiting
curve with about 10 strongly localized modes with 〈P〉 ≈ 2.
The above analysis provides clear evidence that a single
disorder realization with α = 5 is sufficient for the chain to
possess several strongly localized modes.

To monitor the spreading we calculate the time evolution
of the energy density hn and the participation number P.
At the same time we identify and quantify chaos in the
system using the maximum Lyapunov characteristic exponent
(mLCE) [37,38], which is obtained by numerically integrating
the corresponding variational equations [39]. The two sets
of equations where integrated using the so called “Tangent
Map” method with a fourth order optimal integration scheme
with a marching step of 5 × 10−4 in all our simulations
[39,40]. The variational equations govern, at first order of
approximation, the time evolution of a deviation vector�v(t ) =
[δu1, δu2, . . . , δuN , δp1, δp2, . . . , δpN ], where δun, δpn, n =
1, 2, . . . , N are, respectively, small perturbations in positions
and momenta (see, e.g., Ref. [38]).

The mLCE is given by λ = lim
t→∞	(t ), where

	(t ) = 1

t
ln

||v(t )||
||v(0)|| , (8)

is the so-called finite time mLCE [38]. Note that in Eq. (8),
|| · || denotes the usual Euclidean vector norm. For chaotic
orbits, 	(t ) eventually converges to a positive value, while
for regular orbits it tends to zero following the power law
	(t ) ∝ t−1 [38].

To gain more insight about the spatial properties of chaos,
we calculate the deviation vector density (DVD) given by

wn = δu2
n + δp2

n∑
n

(
δu2

n + δp2
n

) . (9)

The deviation vectors are known to align with the most
unstable region in phase space. They have been employed in
disorder nonlinear lattices to visualize the spatial evolution of
the most chaotic regions [41–43]. Here, we make use of the
DVDs to spatially characterize the chaoticity of the system,
either as localized or extended chaos. The initial condition
used for the deviation vectors �v(0) is a random uniform
distribution of momentum perturbations δpi as for this choice,
the time evolution of the finite time mLCE was found to
converge faster to the 	(t ) ∝ t−1 law for regular orbits.

The numerical results shown in the rest of this work
(unless stated otherwise), are performed using a representative
single realization of the statistical ensemble for α = 5. The
corresponding eigenfrequencies of this realization are shown
in Fig. 1(b). Generally, low frequency modes extend over
many particles, whilst high frequency modes are localized.
We identify the 34th as a strongly localized mode (P ≈ 2.5)
located in the middle of the chain at site n = 21 as shown in
the inset of Fig. 1(b). To study the effect of nonlinearity, we
initially excite the 21st site which results in the excitation of
almost only the 34th mode, and we monitor the evolution of
both models as we increase the initial excitation energy.

III. DYNAMICAL EVOLUTION OF AN INITIALLY
LOCALIZED MODE

A. Near linear limit

For sufficiently small energies H , we have numerically
confirmed that the two models behave both qualitatively and
quantitatively the same. An example is given in Fig. 2 which
corresponds to H = 0.25. As shown in Figs. 2(a) and 2(b)
the energy density for both models is completely localized
around the initially excited site n = 21 as shown by the black
solid line which indicates the mean position of the energy
distribution. Localization is quantified by the almost constant
value of P ≈ 1.8 for both models, shown in Fig. 2(c). The
curves of the Hertzian (red) and the FPUT (blue) models
almost overlap. The time evolution of 	(t ) is depicted in
Fig. 2(d) and confirms that the dynamics is regular as 	(t )
follows the power law 	(t ) ∝ t−1.

The spatiotemporal evolution of the corresponding DVD,
plotted in Figs. 3(a) and 3(b), exhibits an extended deviation
vector distribution in contrast to the localized, pointy shape
that DVDs exhibit for chaotic orbits [41–43]. Accordingly,
particular profiles of the DVDs taken at different times shown
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FIG. 2. (a) and (b) The spatiotemporal evolution of the energy
distribution for the Hertzian and FPUT chains respectively for H =
0.25. The black curves indicate the running mean position of the
energy distributions. The color bars on the right sides of (a) and
(b) are in logarithmic scale. (c) The locally weighted smoothed
values of P as a function of time for the Hertzian chain (red curve)
and the FPUT chain (blue curve). (d) The time evolution of 	(t )
for the Hertzian chain (red curve) and the FPUT chain (blue curve).
Both lines practically overlap and the dashed line indicates the law
	(t ) ∝ t−1.

in Figs. 3(c) and 3(d) are found to be extended covering the
whole excited part of the lattice in a relatively smooth way.

However, a difference between the two models is found
by closely inspecting the corresponding participation number
PD of the DVDs shown in Figs. 3(e) and 3(f). This quantity
is calculated in a similar way as the energy density and it
gives the number of sites that are significantly participating
in the dynamics of the DVD. In Figs. 3(e) and 3(f) we observe
that although up to t ≈ 103 both DVDs exhibit approximately
PD ≈ 20, for the case of the Hertzian chain [Fig. 3(e)] it starts
to drop to a smaller value. As discussed earlier, the tendency
of the DVD to start to localize is a precursor of a chaotic spot
that may appear in the dynamics over a longer timescale.

It is interesting to note that, although the two models be-
have almost identically for H = 0.25, this energy corresponds
for the Hertzian model to a initial displacement of u21(0) =
1.01 with the neighboring static overlaps being δ21,22 ≈ 1.06.
These values are far from the small amplitude approximation
(un/δn,n+1 � 1). The two models however show no differ-
ences (at least for the studied timescales), mainly due to the
fact that practically only a single mode is participating in the
dynamics.

B. Chaos and destruction of localization

1. Energy density evolution and chaos

In Fig. 4(a) we show the energy density evolution for the
Hertzian model with energy H = 0.5. The energy distribution
for both models [results for the FPUT are similar to Fig. 2(b)],
is still localized for H = 0.5. However, there is a difference
during the last decade, better captured by the evolution of P
as illustrated in Fig. 4(c), since the Hertzian chain exhibits a
tendency to increase the number of highly excited particles.

The most intriguing feature for this particular case is found
in the system’s chaoticity as quantified by the time evolution

FIG. 3. (a) [(b)] The spatiotemporal evolution of the deviation
vector density (DVD) for the Hertzian [FPUT] disordered chain.
The color bars on the right sides of (a) and (b) are in logarithmic
scale. (c) [(d)] Deviation vector profiles for three time instances of
t ≈ 101 indicated by the blue (b) curve, t ≈ 103 indicated by the
red (r) curve and t ≈ 105 indicated by the black (bl) curve. These
times correspond, respectively, to the blue, red, and black horizontal
lines in panel (a) [b]. (e) [(f)] The time evolution of the participation
number PD of the DVD for the Hertzian [ FPUT] model. All results
are obtained for H = 0.25.

of 	(t ) shown in Fig. 4(d). The red solid line, which corre-
sponds to the Hertzian chain with H = 0.5, deviates from the
	(t ) ∝ t−1 curve, at the last decade, and attains an almost
constant value. This signals that the system is chaotic. In
contrast, for the same energy the FPUT model’s orbit remains

FIG. 4. Panels (a) and (b) show the spatiotemporal evolution of
the energy distribution for the Hertzian model with H = 0.5 and H =
1.8, respectively. Black curves indicate the running mean position of
the energy distributions. The color [41–43] bars on the right sides
of (a, b) are in logarithmic scale. Panels (c) and (d) are the same as
Figs. 2(c) and 2(d); for the Hertzian model H = 0.5 and H = 1.8 and
for the FPUT model with H = 1.8.

032211-4



CHAOS AND ANDERSON LOCALIZATION IN DISORDERED … PHYSICAL REVIEW E 99, 032211 (2019)

FIG. 5. Panel (a) shows the spatiotemporal evolution of the DVD
for the Hertzian model at H = 0.5 whilst panel (b) shows the profiles
of the DVDs at t ≈ 1.7 × 101 red (r) curve, t ≈ 1.7 × 104 magenta
(m) curve and t ≈ 8.2 × 104 blue (b) curve. (c) Same as (a) but
for H = 1.8. (d) Same as (b) but for H = 1.8 at t ≈ 1.7 × 101

red (r) curve, t ≈ 4.9 × 103 magenta (m) curve, t ≈ 3.5 × 104 blue
(b) curve and t ≈ 4.8 × 104 black (bl) curve. The color bars in
(a) and (c) are in logarithmic scale.

regular. The Hertzian model therefore exhibits localized chaos
whilst the FPUT model is localized and regular.

In Fig. 4(b) we show that initially localized wave packet for
the Hertzian model at H = 1.8, gradually spreads throughout
the lattice signaling the destruction of Anderson localization.
In particular, up to t ≈ 2 × 102 the wave packet remains
localized [see Figs. 4(b) and 4(c)] with a participation number
P < 3, it then rapidly spreads until t ≈ 4 × 103. At the last
decade the participation number saturates to a value P ≈ 26.
This is the maximum observed value of P in all our simula-
tions. According to the corresponding 	(t ) shown in Fig. 4(d)
for H = 1.8, the system also becomes chaotic as early as
t ≈ 2 × 102 acquiring an almost constant positive value of
	(t ) ≈ 10−3. Results for the FPUT are not shown for this
energy since excitations were still found to be localized and
regular.

It is important to note here that for the particular single
site excitation, all energies H > 1.8 lead to a final chaotic and
delocalized state. This suggests the appearance of an energy
threshold beyond which the final state of the Hertzian model
is delocalized and chaotic. Below we show that this is true
for different modes of this realization but also for different
realizations.

2. Spatiotemporal evolution of chaos

To better understand the onset of chaos in the aforemen-
tioned cases, we study more closely the behavior of the DVDs.
In Figs. 5(a) and 5(c) we plot the DVDs for the Hertzian
model for H = 0.5 and H = 1.8, respectively. Focusing on
the case of H = 0.5 we see that initially, when the system
behaves regularly, the DVD exhibits an extended smoothed
profile. This is more clearly seen by the red (dotted) curve in
Figs. 5(b). Thereafter, during a period up to t ≈ 4 × 103 the
DVD gradually converges around site n = 21. A profile of the
DVD in this era is shown with the magenta curve in Fig. 5(b).
Finally for the rest of the simulation the profile of the DVD is

strongly localized around site n = 21 as also confirmed by two
different profiles during the last decade shown in Fig. 5(b).
Other recent studies (i.e., Refs. [41–43]) also used the DVD to
spatially characterize chaos. In these works, it was found that
the profile of the DVD exhibits a peak that oscillates within a
chaotic region, while in our case it remains attached to a single
site indicating strongly localized chaos.

At a higher energy of H = 1.8 the DVD initially exhibits
an extended and smooth profile and an example is plotted in
Fig. 5(d) with the red (dotted) line. Further on, it concentrates
around a region close to the center of the chain and beyond this
point the system is chaotic. The evolution of the DVD during
this chaotic era, is characterized by one dominant peak along
with other smaller peaks usually two orders of magnitude
smaller (at most) as illustrated in Fig. 5(d). We particularly
choose three cases where the dominant peak is at the center
(magenta), closer to the right edge (blue), or at the left edge
(black). This is to emphasize the fact that for this energy,
the chaoticity of the system is extended featuring strongly
chaotic spots throughout the whole lattice. Here we would
like to stress the importance of the DVD which enables us
to differentiate between localized and extended chaos.

3. Chaos and delocalization for the FPUT model

In contrast to the Hertzian model, the dynamics for the
FPUT model appears to remain localized and regular up to
an energy excitation of H = 1.8 [see Figs. 4(c) and 4(d)].
The first energy at which the FPUT model’s wave packet
is delocalized, exhibiting also a chaotic behavior, is around
H = 2.9 (first row of Fig. 6). After an initial transient time for
which the wave packet remains localized, in the last decade of
the simulation, it eventually spreads as shown by the energy
density and P in Figs. 6(a) and 6(b), respectively. The time
evolution of 	(t ) shown in panel (d) significantly deviates
from the 	(t ) ∝ t−1 line, indicating chaotic dynamics for t �
4 × 103. Furthermore the DVD shown in Fig. 6(c) exhibits
peaks at different places within the lattice when the system is
chaotic, similarly to Fig. 5(c) for the Hertzian model, which is
associated with extended chaos.

The most striking difference between the two models is
found by examining higher-energy excitations. To our sur-
prise, we found that increasing the energy for the FPUT model
does not necessarily lead to delocalization. In other words,
there is not an energy threshold beyond which the final state
of the FPUT lattice is delocalized. For example, as shown in
the second row of Fig. 6; for H = 4 the excited wave packet
remains well localized and the participation number hardly
changes [compare Figs. 6(a) and 6(b) with Figs. 6(e) and
6(f)]. This is somewhat a surprising result and it highlights the
complexity of the phase-space of a disordered FPUT lattice.
We could qualitatively describe the results for the FPUT
model as alternating between spreading an localization as the
energy increases. To better visualize this alternate behavior, an
example for H = 8.7381 in the bottom row of Fig. 6 is shown,
which exhibits a delocalized and chaotic final energy profile.
For this energy, the system behaves qualitatively the same as
in the first row with H = 2.9.

Regarding chaoticity, the dynamics of the DVDs are shown
in the third column of Fig. 6. For all cases, the initially
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FIG. 6. Panels (a–d) depict the energy density, P, DVD, PD and 	(t ), respectively, for the FPUT with H = 2.9. The second, and third rows
correspond to energies H = 4 and H = 8.7381 respectively. The color bars on the right sides of panels (a, c, e, g, i, and k) are in logarithmic
scale.

localized DVD around n = 21 finally departs from this site
and it oscillates within the lattice. Accordingly, 	(t ), shown
in the last column of Fig. 6, initially follows the regular orbit
slope but eventually signals chaotic dynamics by diverging
from this line and acquiring a nonzero value. We have found
that for all H > 2.8, the final state of the lattice is always
chaotic, irrespective of the localized or delocalized nature of
the wave packet.

C. Role of the nonsmooth nonlinearity and energy equipartition

To further track down the mechanisms responsible for
the different behaviors between the two models we monitor
the appearance of the nonsmooth nonlinearity [i.e., whenever
(un − un−1) > δn] for the Hertzian model, or in other words
the appearance of gaps. Fig. 7(a), shows the position of gaps
for the case H = 0.5, which corresponds to the panels of the
first row of Fig. 4. We clearly see that on the left and right side
of site n = 21 a gap often opens during the system’s evolution
triggering the appearance of the nonsmooth nonlinearity. At
this energy no more than one gap is open at any instant
as observed in Fig. 7(c) where the total number of gaps
as a function of time is plotted. Importantly, since for this
energy the dynamics of both the Hertzian and FPUT models
is equivalent, but the Hertzian model appears to be chaotic,
we identify the nonsmooth nonlinearity around n = 21 as the
ingredient which induces chaos for the Hertzian model.

For the energy H = 1.8 shown in Fig. 7(b), we find that
more gaps start to open “moving” away from site n = 21,
covering eventually the whole lattice. In fact, for the energy
region 0.5 � H � 1.8 the wave packet starts to delocalize (as
quantified by P) at the same time that additional gaps start
to move away from site n = 21. For H = 1.8, as shown in
Fig. 7(b), this happens around t ≈ 3 × 102 which is the same

time that P [see Fig. 4(b)] starts to increase and the wave
packet starts to delocalize. These results, indicate a direct
connection between the spreading of gaps within the lattice
and the energy threshold beyond which the Hertzian model
always traverses to delocalized and extended chaos.

To complete the comparison between the two models we
also calculate the so called “spectral entropy” [44] by monitor-
ing the corresponding normal modes. We write the weighted
harmonic energy of the kth mode as vk = Ek/

∑N
k=1 Ek where

Ek is the kth mode’s energy. We thus obtain the spectral
entropy at time t as

S(t ) = −
N∑

k=1

vk (t ) ln vk (t ), (10)

FIG. 7. The spatiotemporal evolution of the gaps in the Hertzian
model for energies H = 0.5 (a) and H = 1.8 (b). The yellow (lighter)
color corresponds to the lattice points where [un(t ) − un−1(t )] > δn.
The instantaneous total number of gaps for the Hertzian model for
energies H = 0.5 (c) and H = 1.8 (d).
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FIG. 8. Top row: The time evolution of the normalized spectral entropy η(t ) for the Hertzian model. The dashed horizontal line in panels
(c) and (d) show the mean value 〈η〉 given by Eq. (12). Bottom row: The evolution of the weighted harmonic energy of eigenmodes as a
function of time. The modes are sorted by increasing frequency [c.f. Fig. 1(b)]. The values of the energy are H = 0.25 (a–e), H = 0.5 (b–f),
H = 1.8 (c–g), and H = 3 (d–h). The color bars on the right sides of panels (e–h) are in logarithmic scale.

with 0 < S � Smax = ln N . It is, however, more convenient to
use the normalized spectral entropy η(t ), which can be written
as

η(t ) = S(t ) − Smax

S(0) − Smax
. (11)

The value of η is normalized such that 0 � η � 1. With this
normalization, when η remains close to one the dynamics
does not substantially deviate from the initially excited modes.
However, as more modes are excited, η decreases towards
zero. For a system at equipartition, a theoretical prediction
for the mean entropy 〈η〉 exists, which assumes that the
modes at equipartition follow a Gibbs distribution when the
nonlinearity is weak. The analytical form of the mean entropy
〈η〉 is given by [36,45]

〈η〉 = 1 − C

ln N − S(0)
, (12)

with C ≈ 0.5772 being the Euler constant.
In Fig. 8 we plot the time evolution of η and of the normal

modes for different values of the energy H . As shown in
Fig. 8(a), for H = 0.25 where the dynamics for both models is
localized, the normalized entropy initially has a value of η = 1
and only slightly decreases from that value. This indicates that
the dynamics is dominated by the single mode initially excited
along with some weakly excited low frequency modes. This
is also very clear in Fig. 8(e) where the time evolution of the
weighted modes is shown. Initially only mode 34 is visible,
and after some brief transient phase, a set of extended (low
frequency modes) are slightly excited. In fact after t ≈ 102

the amplitude of each mode remains approximately constant
and so does the time evolution of the normalized entropy η(t ).

Similar behavior for the Hertzian model is observed at H =
0.5 [Figs. 8(b)–8(f)], although in this case η(t ) reduces its
value at different time instants. By closely inspecting Fig. 8(f)
we see that indeed around t ≈ 8 × 103 and t ≈ 8 × 104 new
modes appear to kick in. For the two examples with H � 1.8
shown in Figs. 8(c), 8(g) and 8(d), 8(h), the system is driven
closer to equipartition. The entropy η(t ) features a plateau at
a value around η ≈ 0.5 and then decreases into a minimum
value. The horizontal dashed lines in Figs. 8(c) and 8(d)

indicate the value of the mean entropy at equipartition as given
by Eq. (12). The asymptotic value of η(t ) approaches the
theoretically predicted value of 〈η〉 with H � 1.8 as indicated
in Figs. 8(c) and 8(d). The fact that the final stages of these
simulations are close to an equipartition state is also supported
by the mode energy distribution which clearly shows that
at the last decade all modes appear to participate in the
dynamics.

The existence of an energy threshold beyond which
equipartition is reached for the Hertzian model depends nei-
ther on the particular mode nor the chosen realization shown
in Fig. 1(b). To illustrate this, we first identified the nine
most localized modes of the distribution shown in Fig. 1(b).
We then excite these modes by using a single site excitation
around the point of localization of each mode with an energy
H = 3. The choice of energy is to ensure that it is above the
threshold for each mode. The results are shown in Fig. 9(a)
and it is clear in all cases that the system finally reaches
equipartition. We also performed simulations using different
disorder realizations with α = 5, and exciting them at the
central site n = 20 with energy H = 3. Since we always excite
the same site but for different realizations, we may or may not
excite a single localized mode. In any case, as it is shown in
Fig. 9(b), the system reaches to equipartition in all cases.

The absence of an energy threshold leading to equipartition
for the FPUT model is also shown in Fig. 10. For H = 0.25
[Figs. 10(a) and 10(e)], the behavior is the same as for the
Hertzian model: η(t ) saturates to a finite value close to 1
and a dominant mode along with some low frequency modes
are present. For a much higher energy excitation of H = 2.9
shown in Figs. 10(b) and 10(f), from the early stages of the
evolution more modes are excited and the entropy exhibits a
plateau at η ≈ 0.7. Note that such a plateau is well known
and studied in homogeneous FPUT chains and is associated
with a metastable phase [36]. Beyond this point the entropy
abruptly falls at t ≈ 5 × 103 and finally reaches a minimum
value which is found to be close to the analytical result for
equipartition given by Eq. (12). As shown in Fig. 10(f) this is
associated with the excitation of almost all linear modes.

For a larger initial energy H = 4, i.e., the case presented in
the second row of Fig. 6, the dynamics of η is quite surprising.
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FIG. 9. (a) Temporal evolution of η(t ) for the 9 most localized
modes of the distribution corresponding to Fig. 1(b). (b) Temporal
evolution of η(t ) obtained by exciting site n = 20 of 9 different disor-
dered realizations with α = 5. In both panels, the results correspond
to the Hertzian model with an energy H = 3. The dashed horizontal
lines show the average (on the different initial conditions), mean
entropy at equipartition 〈η〉.

As shown in Fig. 10(c) the entropy saturates for most of
the evolution around a relatively large value η ≈ 0.82. For
the past two decades it starts to decrease, but with a very
small slope. This is unexpected (also in accordance to the
homogeneous FPUT studies, e.g., Ref. [36]) since for higher
energy excitations we anticipate to have a shorter plateau (than
the one for H = 0.25) and the system to be driven faster
towards equipartition. However, here the dynamics suggests
that the contribution of modes other than mode 34 remains
weak. This is also seen in Fig. 10(g) where not all modes have
been excited at the end of the simulation, and in particular

the highest frequency ones are still “mute.” However, it is
expected, that for larger timescales the system will reach
equipartition, and η will eventually drop.

To highlight the alternate behavior found for the disorder
FPUT model, in Fig. 10(d) we show the entropy for an even
higher energy excitation of H = 8.7381, which corresponds
to the results presented in the third row of Fig. 6. Similarly
to the case of H = 2.9 the entropy saturates for a long time
interval at a value η ≈ 0.8. Then at t ≈ 104, η starts to drop
and at the end of the simulation reaches a minimal value well
captured by the analytical prediction of Eq. (12). Accordingly,
in Fig. 10(h) we observe that as time increases more modes
participate in the dynamics, and at the final stages of the
simulation all modes are present.

IV. SUMMARY AND CONCLUSIONS

In this work, we numerically studied the destruction of An-
derson localization and the chaoticity of two one-dimensional
disorder models: the Hertzian model featuring a nonsmooth
nonlinearity and the FPUT model. The two models share
the same linear limit and thus the same linear eigenmodes.
Statistics on 1000 disorder realizations demonstrate that be-
yond a sufficient disorder strength, the linear chain acquires
a significant amount of strongly localized modes. Focusing
on a single realization from the aforementioned ensemble, we
show that the evolution of such a mode can be characterized
by three different scenarios: (i) localization with no chaos;
(ii) localization and chaos; (iii) spreading of energy, chaos and
equipartition.

In particular, for sufficiently small energies the two mod-
els behave quantitatively similar, with excitations remaining
localized and non chaotic, at least for the timescales of our
simulations. For larger energy values, a transient energy re-
gion is found for which the Hertzian model exhibits localized
but chaotic behavior. After an energy threshold, associated
to the spreading of gaps in the lattice, the Hertzian model
evolves into an equipartition, chaotic state independent of the
particular value of the initial energy. The appearance of such
a threshold is confirmed for other modes of the particular
disorder realization but also for different disorder realizations.

FIG. 10. Same as in Fig. 8 but for the FPUT model. The dashed horizontal line in panels (b) and (d) show the mean value 〈η〉 given by
Eq. (12). The values of the energy in this case are H = 0.25 (a–e), H = 2.9 (b–f), H = 4 (c–g), and H = 8.7381 (d–h).
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However, the dynamics of the FPUT model is substantially
different from that of the Herztian model. First, delocalization
and chaos emerge for higher energies for the FPUT model.
We find strong numerical evidences that this difference is
attributed to the nonsmooth nonlinearity which is present only
in the Hertzian model. Furthermore, for higher energy values,
the FPUT system shows an alternating behavior between
chaotic localized and chaotic extended dynamics lacking a
particular threshold beyond which equipartition is always
reached. We can therefore conclude that, in contrast to the
Hertzian model, the final state of a strongly disordered FPUT
lattice under single site excitation, strongly depends on both
the disorder realization and the initial excitation energy.

Our results provide further insights into the chaotic dy-
namics of strongly disordered chains. Using additional chaos
indicating tools such as the deviation vector densities, we
are able to clearly separate localized (in space) from ex-
tended chaotic behavior. In addition we show that nonsmooth

nonlinearities do not only induce the destruction of Anderson
localization but also provide a mechanism to drive the system
into equipartition. An interesting direction stemming from our
results is to pursue a thorough statistical analysis to probe the
interplay between disorder and nonlinearity and the resultant
effect on the corresponding timescales for equipartition.
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